Reducing Seismic Residual Deformations in Civil Structures using Superelastic Shape Memory Alloys

ICCSTE'16, Ottawa, ON May 5, 2016

Maged A. Youssef, P.Eng. Professor E-mail: <u>youssef@uwo.ca</u>

Western University

- **Founded**: 1878
- Faculties: 12
 - Land Area: 1,200 acres (82 Buildings)
- Undergrads: 25,000 Student
- Grads: 5,000 Student
- Faculty:
- 1,500 Professor

Western Engineering

- **Founded**: 1954
- Departments:
 - Chemical and Biochemical Engineering.
 - Civil and Environmental Engineering.
 - Electrical and Computer Engineering
 - Mechanical and Materials Engineering.
- Undergrads: 1,600 Student
- Grads: 750 Student
- Faculty: 100 Professor
- Students can graduate with Dual Degrees (Engineering and Business, Law, Music, etc.)

Civil and Environmental Engineering

- Environmental & Water Resources Engineering
- Geotechnical & Geoenvironmental Engineering
- Natural Disaster Mitigation
- Structures and Infrastructure
- Wind Engineering & Environmental Fluid Mechanics

Civil and Environmental Engineering

The Tsing Ma Bridge, Hong Kong

WindEEE Dome

- \$35M+ investment
- World's first 3D wind chamber
- Large scale 25 m in diameter

- Capable of testing urban infrastructure, power facilities, solar panels, wind farms, etc.
- 60 fans installed to manipulate inflow & boundary layer conditions to reproduce largescale wind systems.

Western S Engineering

Reducing Seismic Residual Deformations in Civil Structures using Superelastic Shape Memory Alloys

Design Philosophy

- Buildings are seismically designed for safety.
- Economy is achieved by allowing steel to yield dissipating the seismic energy.
- Permanent residual deformations are expected following a strong seismic activity.
- Design for wind loads is currently being revised to follow the seismic approach.

NiTi SMA Research at Western

- Design Issues.
- RC Beam-Column Joints.
- RC Frames.
- RC Walls.
- Steel Frames.
- Modular Steel Structures.

Comparison between Steel and SMA RC BCJs

- A steel RC BCJ was tested with similar reinforcement arrangement and dimensions
- The specimen subjected to similar drifts experienced irrecoverable damage
- The steel RC specimen was not repairable
- SE SMA RC specimen was serviceable even after similar drift
- · Required minimum amount of repairing

Spectral Acceleration at Collapse

Easth make as and	Steel Frame	SMA Frame			
Eartnquake record	Sa at collapse (g)	Sa at collapse (g)			
Northridge	2.60	3.10			
Imperial Valley	1.15	1.28			
Loma Prieta	4.28	5.75			
Whittier	5.00	5.25			
San Fernando	8.15	8.90			

The percentage of Sa increase is varying from 5.0% to 34.3%

		Exami	ned Wall	S	
Aspect	Wall	Axial	Transverse	Web RFT %	Boundary
Ratio	Thickness	Load %	RFT %		RFT %
6.0	150, 200, 230	2, 7.5, 10	0.25, 0.5, 1	0.5, 0.6, 0.75, 1	0.5, 1.0, 1.5
3.0	150, 200, 230	2, 7.5, 10	0.25, 0.5, 1	0.5, 0.6, 0.75, 1	0.5, 1.0, 1.5
1.5	150, 200, 230	2, 7.5, 10	0.25, 0.5, 1	0.5, 0.6, 0.75, 1	0.5, 1.0, 1.5
Weste	ern 🕏 Engine	ering			

Ground motion	Sa(T1,5%) at collapse	Frame 1		
		MID (%)	MRID (%)	
Imperial	(0.341g)	2.97 (2 nd storey)	0.67 (2 nd floor)	
Northridge	(0.489g)	3.17 (3 rd storey)	0.41 (1 st floor)	
Loma	(0.619g)	5.02 (7 th storey)	0.56 (8th storey)	
San Fernando	(0.476g)	3.48 (6 th storey)	1.21 (4th storey)	
Tabas	(0.445g)	2.75 (3 rd storey)	0.29 (2 nd storey)	

	Imperial		Northridge		Loma		San Fernado		Tabas	
	MID (% change)	MRID(% change)	MID(% change)	MRID	MID(% change)	MRID	MID(% change)	MRID	MID(% change)	MRID(% change)
Frame 2	56.90	-74.74	9.78	-76.44	29.08	19.50	18.39	-90.25	110.18	-74.42
Frame 3	16.50	-8.77	5.27	-44.63	1.31	-24.69	-3.16	-3.31	6.55	-43.20
Frame 4	23.10	-45.32	4.73	7.07	7.17	-42.93	2.01	-40.50	21.82	-8.50
Frame 5	18.52	-45.32	5.14	-25.37	8.43	-30.23	6.90	-21.24	6.91	3.06
Frame 6	16.84	-0.59	6.62	-34.15	0.60	-40.68	-2.01	0.00	9.93	-21.77
Frame 7	22.22	-37.84	5.50	-35.13	4.96	-47.59	1.28	-28.52	13.65	1.61

Modular Steel Frames

- 1. 2014: Use of SMA Bars to Enhance the Seismic Performance of SMA Braced RC Frames, **Earthquakes and Structures**, 6(3): 267-280.
- 2. 2012: Seismic Performance of Concrete Frames Reinforced with Superelastic Shape Memory Alloys, **Smart Structures and Systems**, 9(4): 313-333.
- 2011: Seismic Behaviour of Repaired Superelastic Shape Memory Alloy Reinforced Concrete Beam-Column Joint, Smart Structures and Systems, 7(5): 329-348.
- 4. 2010: Exploratory investigation on mechanical anchors for connecting SMA bars to steel or FRP bars, **Materials and Structures**, 43: 91-107.
- 5. 2010: Development of corrosion-free concrete beam-column joint with adequate seismic energy dissipation, **Engineering Structures**, 32(9): 2518-2528.
- 6. 2010: Artificial Neural Network Model for Deflection Analysis of Superelastic Shape Memory Alloy RC Beams, **Canadian Journal of Civil Eng.**, 37(6): 855-865.
- 2010: Deflection of Superelastic Shape Memory Alloy Reinforced Concrete Beams: Assessment of Existing Models, Canadian Journal of Civil Eng., 37(6): 842-854.

Western S Engineering

- 2009: Seismic Performance of Concrete Frame Structures Reinforced with Superelastic Shape Memory Alloys, Smart Structures and Systems, 5(5): 565-585.
- 9. 2009: Stress Block Parameters for Concrete Flexural Members Reinforced with Shape Memory Alloys", **Materials and Structures**, 42(10): 1335-1351.
- 2008: Analytical prediction of the seismic behaviour of superelastic shape memory alloy reinforced concrete elements, Engineering Structures, 30(12): 3399-3411.
- 11. 2008: Experimental Investigation on the Seismic Behaviour of Beam-Column Joints Reinforced with Superelastic Shape Memory Alloys, **Journal of Earthquake Engineering**, 12(7): 1205-1222.
- 12. 2008: Shape Memory Alloy-Based Smart RC Bridge: Overview of State-of-the-Art, **Smart Structures and Systems**, 4(3): 367-389.
- 2007: Utilizing Shape Memory Alloys to Enhance the Performance and Safety of Civil Infrastructure: a Review", Canadian Journal of Civil Engineering, 34(9): 1075-1086.

Researchers

Western S Engineering

RESEARCHERS

- Professor Moncef Nehdi, University of Western Ontario.
- PhD Theses:

Associate Professor **Charles Darwin Annan**, Laval Associate Professor **M. Shahria Alam**, UBC Assistant Professor **Mahmoud Elfeki**, Alexandria University Assistant Professor **Mohamed Mashaly**, Alexandria University PhD Candidate **Papia Sultana**, Western University PhD Candidate **Emad Abraik**, Western University

 Master Thesis: PhD Candidate Yamen Elbahy, Univ. of Western Ontario.